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Publish-subscribe. Producers in a publish-subscribe communication architecture 
create topics (e.g. data such as temperature, location, pressure, but also events and 
commands) and publish messages accordingly, whereas subscribers express interest 
in one or more topics, and only receive messages that are of interest, without 
knowledge of which publishing nodes, if any, there are. This kind of loose coupling 
supports scalable and dynamic communication structures, and interoperable nodes 
may be developed to a local specification of input and output messages. This eases 
modular development, system integration, and maintenance. Popular instances of 
publish-subscribe architectures for embedded and cyber-physical systems include the 
Robotics Operating System (ROS 2.0) [1], the related Distributed Data Services (DDS) 
[10], and NASA’s open-source cFS software bus [2].   
  
On the downside, the loose coupling in publish-subscribe architectures incurs 
performance penalties, and there are virtually no guarantees on real-time and resilient 
behavior. This makes it extremely difficult, if not impossible, to convincingly argue the 
safety and resililience of embedded and cyber-physical systems with traditional 
publish-subscribe architectures.  
  
RADL Model of Computation. Node integration in RADL [3, 4, 5] is based on the publish-
subscribe paradigm, but it also implements a multi-rate model of computation, which 
arises naturally in distributed settings where computing units execute periodically 
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according to their local clocks and communicate among themselves via message 
passing.   
  
More precisely, the RADL model of computation consists of nodes operating quasi-
periodically at their own periods, and communication through bounded latency 
channels. Hereby, RADL assumes bounded drift for local clocks and bounded 
communication latency. Interactions between nodes are decoupled by having 
components that execute in isolation and communicate through nonblocking 
channels. In this way, when a fast component generates high-frequency input that is 
received and processed by a low-frequency component, then messages might be lost, 
but it is not possible to cause the slow component to react faster than its frequency.   
  
The RADL model of computation is most closely related to the Loosely TimeTriggered 
Architecture (LTTA) [0], the main difference being that LTTA employs a shared memory 
bus instead of a publish-subscribe communication architecture.  One may also think 
of RADL as being a multi-rate extension of ROS 2.0.  
  
The RADL model of computation is also flexible enough to support the whole design 
space between completely asynchronous and time-triggered behavior. This allows to 
configure RADL according to application-specific needs,  including operating domains  
and dynamically changing performance requirements.  
  
  
RADL Integration Architecture. The RADL model of computation provides a number of 
system-level guarantees, which have been formally proven [6]:   
  

§ The latency for processing messages is bounded  
§ Possible enforcement that messages do not overtake each other § Consecutive 

message loss is bounded  
§ Bounded length of message queues for eliminating message loss  

  
These kinds of architectural properties are crucial in efficiently arguing the resilience 
and safety of cyber-physical systems.  In addition, the RADL model of computation is 
also provably resilient against certain cybersecurity threats such as denial-of-service 
attacks.   
  
The RADL model of computation and communication therefore combines some main 
advantages of a publish-subscribe architectures with those of resilient real-time 
integration architectures such as time-triggered architectures. In fact, RADL 
configurations cover the complete design space in between asynchronous and 
synchronously communicating systems. RADL can therefore flexibly be configured for 
meeting specific application needs and requirements.  
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Figure 1: Overview of the RADL design and verification flow.  
  
Design and Verification Flow.  The RADL design and verification flow is depicted in 
Figure 1.   
   

1. Capture of the logical architecture through the RADL architectural definition 
language.  
  

2. Verification ofreal-time properties is based on calendar automata [7] and SMT-
based infinite-state bounded model checking [8,9].  

  
3. The RADLER build tool takes the validated logical architectural definition 

together with software components (in C, C++, or Simulink) as inputs, and 
generates executables based on a description of the underlying physical 
architecture.   
  

4. The RADLER build tool also generates certain run-time health checks, which are 
conservative, light-weight, and locally computed at the level of individual nodes.   

  
  
Engineering Support. Entalus supports clients in their development of resilient and 
secure products along the RADL design and verification flow by  
  

1. Creating descriptions of logical and physical architectures  
2. Verifying  real-time and fault-tolerant system properties  
3. Implementing and maintaining client-specific extensions to RADL   
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4. Architecting efficient assurance arguments for safe and resilient systems  
5. Working out client-specific roadmaps for designing provably resilient multirate 

systems  in clients’ development environment and processes 
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