

1

Multirate Integration Architecture

Provably Resilient Systems by Design

Entalus

Computer Science Labs

www.entalus.com

November 2023

Copyright® 2023/24, all rights reserved.

Publish-subscribe. Producers in a publish-subscribe communication architecture
create topics (e.g. data such as temperature, location, pressure, but also events and
commands) and publish messages accordingly, whereas subscribers express interest
in one or more topics, and only receive messages that are of interest, without
knowledge of which publishing nodes, if any, there are. This kind of loose coupling
supports scalable and dynamic communication structures, and interoperable nodes
may be developed to a local specification of input and output messages. This eases
modular development, system integration, and maintenance. Popular instances of
publish-subscribe architectures for embedded and cyber-physical systems include the
Robotics Operating System (ROS 2.0) [1], the related Distributed Data Services (DDS)
[10], and NASA’s open-source cFS software bus [2].

On the downside, the loose coupling in publish-subscribe architectures incurs
performance penalties, and there are virtually no guarantees on real-time and resilient
behavior. This makes it extremely difficult, if not impossible, to convincingly argue the
safety and resililience of embedded and cyber-physical systems with traditional
publish-subscribe architectures.

RADL Model of Computation. Node integration in RADL [3, 4, 5] is based on the publish-
subscribe paradigm, but it also implements a multi-rate model of computation, which
arises naturally in distributed settings where computing units execute periodically

2

according to their local clocks and communicate among themselves via message
passing.

More precisely, the RADL model of computation consists of nodes operating quasi-
periodically at their own periods, and communication through bounded latency
channels. Hereby, RADL assumes bounded drift for local clocks and bounded
communication latency. Interactions between nodes are decoupled by having
components that execute in isolation and communicate through nonblocking
channels. In this way, when a fast component generates high-frequency input that is
received and processed by a low-frequency component, then messages might be lost,
but it is not possible to cause the slow component to react faster than its frequency.

The RADL model of computation is most closely related to the Loosely TimeTriggered
Architecture (LTTA) [0], the main difference being that LTTA employs a shared memory
bus instead of a publish-subscribe communication architecture. One may also think
of RADL as being a multi-rate extension of ROS 2.0.

The RADL model of computation is also flexible enough to support the whole design
space between completely asynchronous and time-triggered behavior. This allows to
configure RADL according to application-specific needs, including operating domains
and dynamically changing performance requirements.

RADL Integration Architecture. The RADL model of computation provides a number of
system-level guarantees, which have been formally proven [6]:

§ The latency for processing messages is bounded
§ Possible enforcement that messages do not overtake each other § Consecutive

message loss is bounded
§ Bounded length of message queues for eliminating message loss

These kinds of architectural properties are crucial in efficiently arguing the resilience
and safety of cyber-physical systems. In addition, the RADL model of computation is
also provably resilient against certain cybersecurity threats such as denial-of-service
attacks.

The RADL model of computation and communication therefore combines some main
advantages of a publish-subscribe architectures with those of resilient real-time
integration architectures such as time-triggered architectures. In fact, RADL
configurations cover the complete design space in between asynchronous and
synchronously communicating systems. RADL can therefore flexibly be configured for
meeting specific application needs and requirements.

3

Figure 1: Overview of the RADL design and verification flow.

Design and Verification Flow. The RADL design and verification flow is depicted in
Figure 1.

1. Capture of the logical architecture through the RADL architectural definition
language.

2. Verification ofreal-time properties is based on calendar automata [7] and SMT-
based infinite-state bounded model checking [8,9].

3. The RADLER build tool takes the validated logical architectural definition

together with software components (in C, C++, or Simulink) as inputs, and
generates executables based on a description of the underlying physical
architecture.

4. The RADLER build tool also generates certain run-time health checks, which are
conservative, light-weight, and locally computed at the level of individual nodes.

Engineering Support. Entalus supports clients in their development of resilient and
secure products along the RADL design and verification flow by

1. Creating descriptions of logical and physical architectures
2. Verifying real-time and fault-tolerant system properties
3. Implementing and maintaining client-specific extensions to RADL

Sys_input :
+ + topic+{+FIELDS

+:
+ danger +

+ bool + true +
64+0.0+}+++ speed+:+float +

+ Sensor+:+node+{+
+10+ PERIOD +

+ msec +
PUBLISHES+o1+{+TOPIC +

+ +
Sys_input +}

+ …++

RADL Description

Simulink Model
Platform

Assumption
Verification

Formal Model

Code

Comm. Layer
Node

 Comp.

Machine:+plant+{+
MACHINES+
+
+ +

+ computer+{+OS
++
++ +:

+ hypervisor cerQkos +{
+ VMS ++++

++ +
+++++
+++ operator_vm +{

+ OS +{+ + NODE+operator +++++++
++++ …+

Logical Architecture Physical Architecture

High-Assurance System

Embedded Coder

Sim2SAL

Check+Latency+
Bounds,+etc.+
at+RunQme+

Simulation

Execution

VerificaQon+of+
RealWTime+
ProperQes+

Functional
Verification

Node:+MODULE+
Channel:+MODULE+
… + +
c:+THEOREM+…+

radler

Model Validation

User%
Code%

Manual

4

4. Architecting efficient assurance arguments for safe and resilient systems
5. Working out client-specific roadmaps for designing provably resilient multirate

systems in clients’ development environment and processes

 Contact.

Harald Ruess
Principal Partner, Entalus LLC

email: harald.ruess@entalus.com
phone: +1 (941) 312-2144

References.

[0] Benveniste, Alberto. Loosely Time-Triggered Architectures for Cyber-Physical Systems, 2010

Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), 2010.

[1] https://github.com/ros2

[2] https://cfs.gsfc.nasa.gov/

[3] Li, Wenchao, Léonard, Gérard, and Natarajan Shankar. Design and verification of multi-rate

distributed systems. 2015 ACM/IEEE International Conference on Formal Methods and Models for
Codesign (MEMOCODE), IEEE, 2015.

[4] Owre, Sam, and Natarajan Shankar. Contract-Based Verification of Complex Time-Dependent

Behaviors in Avionic Systems. NASA Formal Methods. Vol. 9690. Springer, 2016.

[5] https://github.com/SRI-CSL/radler

[6] Larrieu, Robin, and Natarajan Shankar. A framework for high-assurance quasi-synchronous systems.

2014 Twelfth ACM/IEEE Conference on Formal Methods and Models for Codesign (MEMOCODE).
IEEE, 2014.

[7] Dutertre, Bruno, and Sorea, Maria. Modeling and verification of a fault-tolerant real-time startup

protocol using calendar automata. International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems. Springer, 2004.

[8] De Moura, Leonardo, Harald Ruess, and Maria Sorea. Bounded Model Checking and Induction: From

Refutation to Verification. International Conference on Computer Aided Verification. Springer, 2003.

[9] De Moura, Leonardo, Harald Ruess, and Maria Sorea. Lazy theorem proving for bounded model

checking over infinite domains. International Conference on Automated Deduction. Springer, 2002.

[10] https://www.dds-foundation.org/

[11] Kopetz, Helmut and Bauer. The time-triggered architecture. in Proceedings of the IEEE, vol. 91, no.

1, 2003.

5

