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The Need for Memory Safety. The White House Office of the National Cyber Director (ONCD) 
recently argued that technology vendors can prevent entire classes of vulnerabilities from 
entering the digital ecosystem by adopting memory-safe programming languages [1]. Many 
have wondered why the highest echelons of the U.S. government would be concerned with 
the seemingly technical housekeeping issues of computer memory layout that primarily affect 
programmers.  

Memory safety vulnerabilities are extremely common (Figure 1) [3], and industry report 
indicates that 70% or more of Common Vulnerabilities and Exposures (CVEs) are memory 
safety vulnerabilities [30-33]. The majority of cybersecurity vulnerabilities over the past few 
decades have been enabled by memory safety vulnerabilities, including the Morris Worm [22], 
Slammer Worm [23], Heartbleed [24], Blastpass [25], and Spectre/Meltdown [26]. 

Failure to satisfy memory safety properties also costs us dearly [13]: "… memory safety bugs 
are widespread and one of the leading causes of vulnerabilities in memory-unsafe codebases. 
Those vulnerabilities endanger end users, our industry, and the broader society". In fact, 
cybercrime has become an $8 trillion problem in the U.S. alone [28]. It is clear that the world 
would already be a safer and more secure place if the basic hardware and software supply 
chains could be made at least memory-safe. 
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Figure 1. Top 10 Software Vulnerabilities (Source: MITRE, 2023, [13]). 

 

Memory safety vulnerabilities affect how memory can be accessed, written, allocated, or 
deallocated in unintended ways. This includes violations to basic invariant properties such as  

• Any object in memory must be written at least once before being read. 
• References always point to valid memory objects.1 
• There always is exactly one reference to a valid memory object. 
• All memory objects are properly deallocated as soon as they are not used anymore. 
• Access to shared global memory objects is synchronized as to prevent data races. 

Any program that violates memory safety properties is considered unsafe in that it may crash 
(e.g., null pointer dereferencing), produce unintended behavior (e.g., use-after-free), leak 
sensitive information (e.g., out-of-bounds reads), exhibit non-deterministic behavior (e.g., 
data races), or allow program hijacking (e.g., buffer overflows).   

Memory safety is not a single, universally accepted concept. Instead, it depends very much on 
the definition of the underlying programming language(s) as to what memory safety means 
for a program. For example, data races are defined in Java, but considered undefined behavior 
in C and C++. 

Most system software has been and still is written in C or C++, which, although they have been 
greatly modernized in recent years, still place most of the burden of ensuring that safety 
conditions are met on the programmer.  To avoid unsafe memory management, C and C++ 
programmers have a variety of methods, techniques, and tools at their disposal, including 
programming guidelines, restricting themselves to safer subsets of the programming 
language, and detecting and isolating memory safety violations with dynamic and static 

 
1 For example, a memory object is not deallocated from memory as long as one or more references point to it. 
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analysis. But neither can find every vulnerability, and they open other cans of worms like false 
positives. 

These attempts to address the problem have only been partially successful, as two-thirds of 
the reported vulnerabilities in memory-unsafe languages are still related to memory issues. 
Consequently, there is a strong movement to move away from programming languages that 
are considered to be memory-unsafe [14,29]. 

Memory safe programming languages. Automatic memory management in the form of 
garbage collection, which periodically checks for unused memory as the program runs, is the 
most common technique for avoiding the vast majority of memory safety problems. As a 
result, most modern programming languages are based on a garbage-collecting runtime. 
However, garbage collection imposes a certain runtime overhead, and is therefore not used 
in high-performance applications, which often require direct memory access and manual 
memory management to improve real-time behavior and reduce memory consumption.  

Essential memory safety properties can also be enforced by a type-checking compiler, since 
type systems ensure that well-typed programs cannot "go wrong" [4], i.e. they don't crash and 
their results are well defined with respect to the operational semantics of the programming 
language.  The well-typedness of a program is enforced statically, at compile time, and/or 
dynamically, at run time.  

Rust has a type-based approach to memory management that differs significantly from the 
classical approach of C or C++, where memory is managed manually through functions such 
as malloc and free, or by letting the garbage collector manage the resources. In contrast, its 
type system enforces basic memory safety properties such as no-aliasing through a notion of 
ownership that enforces that each object in memory is owned by at most one mutable 
reference, and that each memory object can be modified only by a reference that currently 
owns the object. When the owner reaches the end of its lifetime, i.e., when it is no longer used 
in the remainder of the computation, the object it owns is automatically dropped, i.e., 
deallocated from memory. As a result, the ownership model allows Rust to automatically and 
to efficiently handle memory management without the need for advanced garbage collection. 
For example, it has been estimated that the Rust type system would have prevented 53 out of 
95 reported bugs in cURL, 47 of which are due to standard memory bugs [40]. On the other 
hand, Rust only protects only against 6 out of the current top 25 top CVEs, even when ’unsafe’ 
blocks are not in use [48]. 

Because Rust does not currently have a well-defined and generally agreed-upon formal 
semantics,2 it is not all that clear which memory safety properties should actually be preserved 
by its type checker. But the Rust compiler error messages at least indicate the intended set of 
Rust's memory safety invariants [15], and there is progress on understanding and formalizing 
Rust’s ownership and borrow mechanism at least at the memory level [47]. 

Rust’s type system can also be used to encode program invariants beyond memory safety. 
First, the Rust type system enforces a certain discipline on thread programming, since a well-
typed Rust program will enforce a lock on a mutex before it can be accessed, and a lock release 
will eventually occur after such an access. Data races are also largely prevented by Rust's 

 
2 Some effort has been put into formalizing various parts of Rust, such as Oxide [35], Krust [34]. 
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ownership system, since it is impossible to alias a mutable reference ([12], Section 8.1). But, 
of course, the Rust type system cannot prevent general race conditions, since this is 
impossible.  Second, certain two-state typestates such as "these messages can only be sent to 
the client after authentication has succeeded, and not after the session has been terminated" 
can be implemented directly as compile-time checks based on Rust's move semantics [20]. 
Third, Rust also allows for some static information flow analysis due to its ownership model, 
which prevents pointer aliasing problems [36]. But there is a limit to encoding data, control, 
and information flow invariants of programs as types, because their analysis is inherently 
complex or even generally undecidable.   

Statically typed languages provide essential memory safety properties, but they usually also 
provide means to break their type systems, intentionally or not.  For example, the Obj.magic 
function in Ocaml casts any object of one type to any other type. And Rust includes both a 
safe and an unsafe programming language, allowing the programmer to do extra things that 
are definitely not safe [10].  While aliasing is not an issue in safe Rust, once unsafe code blocks 
are involved, aliasing becomes an issue again [39]. Note also that the Rust compilation 
framework itself is built on a large pile of unsafe code, including unsafe programming in the 
Rust standard library, the C11 atomic type system, and indeed the entire LLVM compiler 
infrastructure for C-like languages. Thus, virtually every Rust program depends on unsafe code 
[41]. 

From C to Rust. There is currently a strong movement to adopt memory-safe and efficient 
programming languages such as Rust [14,17,29]. However, the sheer size and complexity of 
existing software stacks poses significant challenges to a smooth transition to memory safety.  

A manual reimplementation effort of existing C and C++ code into a memory-safe language is 
costly, error-prone, and doesn't scale well. The obvious question, then, is whether we can 
automate much of the translation and rewriting process to make legacy migration practical 
and scalable with minimal manual effort. Previous attempts to automatically translate C 
programs to Rust have been purely syntactic, producing memory and thread-unsafe Rust code 
that closely mimics the original C code and explicitly bypasses the Rust compiler's safety 
checks [18,19]. While these tools may provide a good starting point for automated translation, 
they leave the hard work of manually reasoning about the safety properties of the translated 
program and rewriting the code to allow the Rust compiler to verify those properties to the 
developer.  

An empirical study of the unsafety in translated Rust programs and its causes concludes that 
it is currently rather unclear how, if at all, to systematically translate a memory unsafe 
language like C into safe Rust, and how much manual effort is required to do so [38].  
Moreover, specifying and verifying the correctness of a C-to-Rust translator, safe or unsafe, or 
even validating the correctness of individual translations is a daunting task in itself. 

Instead, we propose what appears to be a more practical way to integrate C with Rust in a way 
that is memory safe. The first step is to establish essential memory safety invariants over the 
C code. Second, this memory-safe C code is syntactically transformed into, say, unsafe Rust 
using existing C-to-Rust tools. The memory safety provisions in the first step guarantee that 
the unsafe C-like blocks do not compromise the memory safety of the safe Rust. The important 
thing to remember is that the unsafe code is encapsulated in a safe abstraction [39]. This 
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alternative approach from C to Rust relies heavily on ontic typing to establish essential 
memory safety invariants for C programs. 

On<c typing. The key idea of onDc typing [21] is that a type is not just a collecion of eniies, 
but that it captures a phenomenal aspect of the thing being represented, so that we can 
operate meaningfully on the representaion. Technically, onic types form a subtype lajce 
over a ghost tag associated with a datum. The operaional semanics of expressions and 
statements of a programming language is extended to include a precondiion on the possible 
ghost tags and a transiion relaion to determine possible effects on the ghost tags.   
 
In their simplest form, onic types can be thought of as typestates that determine valid 
sequences of operaions that can be performed on an instance of a given type [16].  But onic 
types extend typestates considerably in that values can have onic tags along muliple 
dimensions, which can be interdependent in the sense that informaion can flow across 
different dimensions of onic types.   

Ontic type analysis accumulates all possible ghost tags at each reachable control location of 
the program, and checks that the collection of preconditions for these ghost tags holds at each 
control location of the program. In this way, ontic type analysis reduces to a terminating fixed-
point iteration for well-founded programs. It is decidable if all the branching conditions and 
applicable lattice operators are decidable. Alternatively, ontic type analysis can be formulated 
as Constrained Horn Clauses (CHC).  Ontic type analysis is much more precise than typical 
dataflow or taint analysis because it uses contextual information and the combination of 
decision procedures for solving constraints over the datatypes of the programming language 
under consideration.  Ontic types are also expressive for hyperproperties, since the analysis of 
typical information flow properties is based on Reynold’s self-composition trick for 
symbolically relating different executions of a program [16]. 

Ontic Typing for C. We now provide preliminary examples of how ontic typing is used to 
ensure some basic memory safety invariants for C-like programs. For ontic type analysis to be 
effective, the underlying program is assumed to terminate. 

Take null dereferencing, for example. Its "inventor" calls it, in a typical case of British 
understatement, a billion-dollar mistake [42]. An ontic type for fixing null dereferencing simply 
keeps track of whether each pointer is NULL or NONNULL. The dereference precondition now 
checks that its argument pointer has NONNULL as its only possible ghost value. Since memory 
allocation is abstracted to succeed or fail non-deterministically, the postcondition on the ghost 
value of this operation is {NULL, NONNULL}. Dereferencing a pointer with this 
nondeterministic ghost value will fail, so a nullity check is required. 

An ontic type is also used to express lifetime invariance between references and values.  For 
example, a ghost variable refcount is used to keep track of the number of references pointing 
to this value. For example, an assignment like *p = v has the ontic precondition (p.refcount = 
0), which expresses that no pointer points to the value v. In this case, the postcondition is 
(p'.refcount = p.refcount + 1).  Furthermore, the deallocation of memory has the precondition 
(p.refcount = 0), which enforces that there are no dangling pointers. It should be clear that we 
are essentially encoding reference counting for C, with the notable difference that it is not 
used for dynamic runtime memory management, but for static checking of ontic invariants. 
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The ontic ownership type tracks whether a value is owned by the reference to which it is 
bound [21]. Ownership can also be transferred from one owner to another. When ownership 
is transferred, the ontic type of the variable is marked as stale, with the caveat that a stale 
value cannot be reused and does not need to be finalized at the end of the scope of the 
reference.  Note that mutability interacts with ownership, since an immutable value can be 
transferred to a mutable variable by changing the mutability flag. Finally, references to owned 
values can be borrowed by other references as long as (1) the scope of the borrowing is 
contained within the scope of the owner, and (2) the mutable borrows are exclusive.  Rust's 
borrowing system can, in principle, be coded as an ontic type, since for any statement at any 
control point, a transfer function can be defined to tell us which borrows it brings in or out of 
scope (cf. Rust RFC2094). 

Ontic types keep also track of program counters to ensure that certain operations are 
performed in a timely manner. For example, such an ontic type might require that a file be 
closed at most N steps after its last access, which is expressed in Rust slang as the end of its 
lifetime. 

An ontic type can distinguish between mutable and immutable references as in Rust. Based 
on this information, a variant of the reference-counting ontic type can, like Rust, ensure the 
memory safety property that there is at most one mutable reference pointing to any value at 
any time. Unlike Rust, however, one does not necessarily have to declare statically whether a 
reference is mutable or immutable, and a reference may be determined by an ontic type to 
be mutable for some parts of the code and immutable for other parts of the code. In these 
cases, there is an implicit flow of information from the mutable to the reference-counting 
ontic type. 

Previous work has also attempted to provide C programmers with greater memory safety 
using fat pointers [45,46], which store some additional data besides just the address of the 
object being pointed to. Fat pointers are captured by corresponding ghost tags of an ontic 
type, thereby eliminating the runtime penalty of fat pointers. Similarly, an ontic type captures 
hardware-based capability-enhanced memory management, such as the capability hardware 
enhanced RISC instructions (CHERI) architecture [43,44,48], which replaces memory addresses 
with capabilities including permissions and tags. Bounds checking is performed on memory 
access, and capabilities can only be modified monotonically, which is now enforced by the 
ontic type instead of the underlying hardware. 

Data races are prevented using ontic types by ensuring that globally shared variables (between 
threads) are protected by mutexes, that each write is preceded by a lock, and that mutexes 
are always unlocked in a timely manner after use. Arguably, ontic types for preventing data 
races are much simpler, more transparent, and more flexible than Rust's rather complicated 
ownership, borrow, and lifetime-based type system, along with smart pointers and unsafe 
library code for ensuring similar invariants. 

These examples are intended to demonstrate the expressiveness, flexibility, compositionality, 
and open-endedness of ontic typing for making C a safer programming language. But there 
are many more useful ontic types such as input taint, initialized/uninitialized variables, 
dimensional analysis, freshness, security levels, authentication, encryption/decryption, 
authorization, declassification, and space/time complexity [21].  
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Approach. Ontic type analysis for C enforces essential memory safety properties that are 
sound and relatively complete with respect to a well-defined subset of Rust's intended 
memory safety invariants. However, the ontic C type checker, while clearly motivated by 
Rust's ownership, does not duplicate Rust's type system.  Instead, it ensures a practically 
useful subset of memory safety invariants that do not require additional type annotations. At 
the very least, these invariants provide a safe abstraction for embedding unsafe code in Rust. 
There are three main challenges to supporting safer C: 

1. Specify a minimal set of ontic memory safety types that is sound and relatively 
complete with respect to standard C semantics and Rust's intended set of memory 
safety invariants [15]. Soundness is only argued informally, given the lack of precise 
formal semantics for both C and Rust. Formal completeness would also require the 
exploration of dark and largely unexplored corners of C semantics.  

2. Design an efficient and useful ontic type analyzer based on efficient symbolic execution 
combined with precise and lightning fast decision procedures for a combination of 
basic C types. Computational speedup and modular ontic type analysis can be achieved 
by ontic summaries, which are exact ontic pre- and postconditions of larger code 
fragments.  

3. Design useful error messages and goal-directed interactions to identify and locate root 
causes of ontic type violations, as well as possible repair suggestions.  

A variant of the ontic type checker for C may also be based on the LLVM intermediate 
representation, or alternatively on MLIR, since the semantics of these intermediate languages 
are easier to capture for the definition of succinct ontic types. 

Benefits. The ontic type checker for safer C is an essential tool for making the programming 
world at least a memory-safe place. It provides the provably correct safe interface abstraction 
for safely integrating the unsafe Rust that results from translating that C code into Rust. 
Another use of ontic C type checking is to analyze critical legacy C code in the software supply 
chain, and it is also used to incrementally transform and repair memory-unsafe C programs so 
that they may be suitable for more automated translation into memory-safe Rust. 

Compiling a version of the C program that explicitly maintains ghost tags is also helpful for 
debugging existing implementations, since ontic types are now interpreted as runtime 
monitors. These runtime checks are essential for detecting, for example, side-channel attacks 
such as physically manipulated random generators. Similarly, fuzzers are tuned to generate 
refined test input that matches the ontic type. By clearly separaing the onic roles of the data 
used, we also expect onic types in C to lead to a more principled programming discipline. 
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